THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 11 Problems
 15th April 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. For each of the following polynomial over the stated rings, decide whether it is irreducible or not.
(a) $x^{4}+1 \in \mathbb{R}[x]$.
(b) $x^{4}+1 \in \mathbb{Q}[x]$.
(c) $x^{7}+11 x^{3}-33 x+22 \in \mathbb{Q}[x]$.
(d) $x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Q}[x]$.
(e) $x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{R}[x]$.
(f) $x^{3}-7 x^{2}+3 x+3 \in \mathbb{Q}[x]$.
(g) $x^{3}-5 \in \mathbb{Z}_{11}[x]$.
(h) $x^{4}+x+1 \in \mathbb{Z}_{2}[x]$.
2. Deduce proposition 12.1.1 (commonly called the rational root theorem) as a simple corollary from lemma 12.1.9 (Gauss' theorem).
3. Show that $x^{n}+5 x^{n-1}+3$ is irreducible over $\mathbb{Z}[x]$ for any $n \geq 2$, by consider \mathbb{Z}_{3}. (Hint: Try to mimick the proof of Eisenstein's criterion.)
4. Let a_{1}, \ldots, a_{n} be distinct integers, prove that $f(x)=\prod_{k=1}^{n}\left(x-a_{i}\right)-1$ is irreducible in $\mathbb{Q}[x]$.
5. Given that $\mathbb{Z}[i]$ is a UFD, we will show that $f(x)=x^{4}-4 x+2$ is irreducible over $\mathbb{Z}[i][x]$ in the following exercise.
(a) Find irreducible factors of 2 , and hence explain why $f(x)$ has no linear factors in $\mathbb{Z}[i][x]$. Therefore $f(x)$ is a product of two degree 2 irreducibles if $f(x)$ was reducible.
(b) Factorize $x^{4}-4 x+2$ into irreducible polynomials over $\mathbb{Z}_{5}[x]$.
(c) Prove, or recall from Tutorial 10 that there exists a surjective ring homomorphism $\mathbb{Z}[i] \rightarrow \mathbb{Z}_{5}$. Deduce a contradiction from part (a) if $f(x)$ was assumed to be reducible over $\mathbb{Z}[i]$.
6. Let $p(x) \in \mathbb{Z}[x]$ be an irreducible polynomial, is $\mathbb{Z}[x] /(p)$ a field?
7. Is $\mathbb{Q}(\sqrt{2})$ isomorphic to $\mathbb{Q}(\sqrt{3})$?
